• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • Advertise
  • Subscribe

MassDevice

The Medical Device Business Journal — Medical Device News & Articles | MassDevice

  • Latest News
  • Technologies
    • Artificial Intelligence (AI)
    • Cardiovascular
    • Orthopedics
    • Neurological
    • Diabetes
    • Surgical Robotics
  • Business & Finance
    • Wall Street Beat
    • Earnings Reports
    • Funding Roundup
    • Mergers & Acquisitions
    • Initial Public Offering (IPO)
    • Legal News
    • Personnel Moves
    • Medtech 100 Stock Index
  • Regulatory & Compliance
    • Food & Drug Administration (FDA)
    • Recalls
    • 510(k)
    • Pre-Market Approval (PMA)
    • MDSAP
    • Clinical Trials
  • Special Content
    • Special Reports
    • In-Depth Coverage
    • DeviceTalks
  • Podcasts
    • MassDevice Fast Five
    • DeviceTalks Weekly
    • OEM Talks
      • AbbottTalks
      • Boston ScientificTalks
      • DeviceTalks AI
      • IntuitiveTalks
      • MedtechWOMEN Talks
      • MedtronicTalks
      • Neuro Innovation Talks
      • Ortho Innovation Talks
      • Structural Heart Talks
      • StrykerTalks
  • Resources
    • About MassDevice
    • DeviceTalks
    • Newsletter Signup
    • Leadership in Medtech
    • Manufacturers & Suppliers Search
    • MedTech100 Index
    • Videos
    • Webinars
    • Whitepapers
    • Voices
Home » Supporting innovative research through regulatory science

Supporting innovative research through regulatory science

March 5, 2014 By MassDevice Contributors Network

Supporting innovative research through regulatory science

By: Carolyn A. Wilson, Ph.D.

In my last blog post I discussed aspects of regulatory science, that is, how scientists in FDA’s Center for Biologics Evaluation and Research (CBER) help to turn innovative medical research into life-saving or life-enhancing biological products. I also described how FDA scientists help determine if potential health problems are linked to the use of a particular medical product. In this post, I’ll discuss two more studies that made important contributions to public health.

Sometimes CBER research changes the way scientists look at a problem so their research is more efficient. For example, in the field of gene therapy, a strain of the common cold virus called an adenovirus, is used as a vector – delivering therapeutic genes to treat both inherited and non-inherited conditions. However, success of this therapeutic approach has been hampered in part by the finding that an immune response to the adenovirus may prevent efficient delivery of the therapeutic genes to their targets, such as cancer cells. The problem appeared to be that once inside the body, the adenovirus attaches a blood clotting protein called FX to itself and binds to liver cells. As a result the vector doesn’t reach the desired target cells where it would deliver the therapeutic gene.

Some scientists thought that altering the virus so it couldn’t bind FX would let it avoid the liver, making it a more efficient vector. However, scientists in the Office of Cellular, Tissue and Gene Therapies (OCTGT) discovered that adenovirus commandeers the FX protein to use as a shield to evade attack by the immune system. So removing it would likely enable the immune system to attack and disable the adenovirus and block treatment. This new knowledge that the adenovirus needs FX to disguise itself from the immune system will help guide researchers to design gene therapy vectors that survive in the bloodstream and reach their desired target cells.

Another group of scientists, in the Office of Blood Research and Review (OBRR), has contributed to our understanding of why African Americans are significantly more likely than whites to produce antibodies against a drug used to treat hemophilia A. People with hemophilia A carry a mutation in the gene for the protein Factor VIII (FVIII) – a protein that plays an essential role in clotting and preventing blood loss. This mutation either eliminates or greatly reduces the amount of Factor VIII in the blood. Fortunately, there is a therapeutic form of FVIII made through biotechnology that is used to replace faulty or missing, natural FVIII. But unfortunately, some African Americans with hemophilia A make antibodies against therapeutic FVIII. These antibodies attack it and disrupt treatment. The FDA scientists discovered certain genetic variations in the gene for Factor VIII made by these individuals that appear to be responsible for this immune system attack. The discovery is an important step in developing ways to predict which patients will develop antibodies against this complication. And that is an important step toward developing a personalized-medicine approach to hemophilia A by custom-designing medical responses to this life-threatening disease.

The examples I’ve given of CBER research here and in my previous blog are just a small sample of the important knowledge our scientists are creating that supports efforts of medical researchers striving to develop products that improve public health nationally and globally.  In 2013, CBER scientists published their research findings in over 200 journals and books.

I’ll be back to update you on more exciting research from CBER during 2014.

Carolyn A. Wilson, Ph.D., is Associate Director for Research at FDA’s Center for Biologics Evaluation and Research.

Filed Under: Food & Drug Administration (FDA), News Well Tagged With: Regulatory

More recent news

  • Autonomix picks up key nerve ablation catheter patent
  • Affluent Medical can move to pivotal phase of artificial urinary sphincter study
  • Globus Medical announces $500M share repurchase program
  • Cook Medical warns of issue with angiographic catheter
  • Virtuoso Surgical reports first cases with robotic endoscopy system, plans FDA IDE submission

Primary Sidebar

“md
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest med device regulatory, business and technology news.

DeviceTalks Weekly

See More >

MEDTECH 100 Stock INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
MDO ad

Footer

MASSDEVICE MEDICAL NETWORK

DeviceTalks
Drug Delivery Business News
Medical Design & Outsourcing
Medical Tubing + Extrusion
Drug Discovery & Development
Pharmaceutical Processing World
MedTech 100 Index
R&D World
Medical Design Sourcing

DeviceTalks Webinars, Podcasts, & Discussions

Attend our Monthly Webinars
Listen to our Weekly Podcasts
Join our DeviceTalks Tuesdays Discussion

MASSDEVICE

Subscribe to MassDevice E-Newsletter
Advertise with us
About
Contact us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy