• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • Advertise
  • Subscribe

MassDevice

The Medical Device Business Journal — Medical Device News & Articles | MassDevice

  • Latest News
  • Technologies
    • Artificial Intelligence (AI)
    • Cardiovascular
    • Orthopedics
    • Neurological
    • Diabetes
    • Surgical Robotics
  • Business & Finance
    • Wall Street Beat
    • Earnings Reports
    • Funding Roundup
    • Mergers & Acquisitions
    • Initial Public Offering (IPO)
    • Legal News
    • Personnel Moves
    • Medtech 100 Stock Index
  • Regulatory & Compliance
    • Food & Drug Administration (FDA)
    • Recalls
    • 510(k)
    • Pre-Market Approval (PMA)
    • MDSAP
    • Clinical Trials
  • Special Content
    • Special Reports
    • In-Depth Coverage
    • DeviceTalks
  • Podcasts
    • MassDevice Fast Five
    • DeviceTalks Weekly
    • OEM Talks
      • AbbottTalks
      • Boston ScientificTalks
      • DeviceTalks AI
      • IntuitiveTalks
      • MedtechWOMEN Talks
      • MedtronicTalks
      • Neuro Innovation Talks
      • Ortho Innovation Talks
      • Structural Heart Talks
      • StrykerTalks
  • Resources
    • About MassDevice
    • DeviceTalks
    • Newsletter Signup
    • Leadership in Medtech
    • Manufacturers & Suppliers Search
    • MedTech100 Index
    • Videos
    • Webinars
    • Whitepapers
    • Voices
Home » Building cyborg tissues: Bioengineering meets nanoelectronics

Building cyborg tissues: Bioengineering meets nanoelectronics

August 31, 2012 By MassDevice Contributors Network

We’re at the cusp of integrating miniaturized electronics and monitoring into engineered tissues and organs.

By Tom Ulrich

At the start of the 2009 Star Trek reboot (this is relevant, trust me), the USS Kelvin’s captain meets the enemy on their ship to try to negotiate a cease-fire. His crew uses a kind of sensing technology to track his vital signs—like heart rate, breathing, body temperature—right up to the moment of his untimely demise.

While we’re not quite up to the technology level of the Star Trek universe, the ability to remotely sense what’s going on in tissues and organs is something of a holy grail for bioengineers. This is especially true for artificial or engineered organs: If you’d grown a new kidney for a patient needing a transplant, for example, you’d want some way to monitor it and make sure it’s working properly. It’s something that the body does naturally, but that bioengineers have struggled to replicate.

“In the body, the autonomic nervous system keeps track of pH, chemistry, oxygen and other factors, and triggers responses as needed,” says Daniel Kohane, MD, PhD, a biomaterials researcher in Boston Children’s Hospital’s Anesthesia Department. “We need to be able to mimic the kind of intrinsic feedback loops the body has evolved in order to maintain fine control at the cellular and tissue level.”

Vector

The main challenge has been designing sensors that merge directly with engineered tissues. But it’s a challenge that Kohane and collaborators at Harvard and MIT may have overcome by building, in essence, cyborg tissues.

The autonomic nervous system (or ANS) Kohane referred to is the unconscious part of our nervous system. It works in the background, quietly coordinating all of our body’s vital functions and adjusting them as necessary.

A single nanowire (at center) within its scaffolding. (Images courtesy Bozhi Tian)

With that as inspiration, Bozhi Tian, PhD, a postdoctoral fellow in the Kohane lab (now at the University of Chicago), worked with collaborators in the labs of Harvard’s Charles M. Lieber, PhD, andRobert Langer, ScD, to create the beginnings of an artificial ANS. Their system, reported in Nature Materials, consists of mesh-like networks of nanoscale silicon wires—about 80 nm in diameter, roughly 1,000 times narrower than a human hair—shaped into flat planes or puffy balls like cotton candy.

The wires are so small that, according to Kohane, they’re close in size to parts of the extracellular matrix—the lattice of materials that surrounds cells, helping regulate their function. And the networks are porous enough that the researchers were able to seed them with heart, nerve and smooth-muscle cells and get those cells to grow three-dimensionally around the networks.

A schematic for integrating nanoelectronics with engineered tissue, building 3D structures from nanowires and transistors (click to enlarge).

On top of that, once the wires were incorporated into tissues, the team could measure electrical activity in the heart and nerve tissues, even tracking changes in response to heart and nerve-stimulating drugs. They could even detect changes in the acidity of fluids passing through an engineered, sensor-laden blood vessel—the kind of changes that our bodies might detect in tissues that are inflamed or don’t have enough oxygen.

“This represents the first example of truly merging electronics and tissue in 3D,” adds Bozhi, who was recently named one of Technology Review‘s top 35 innovators under 35 this year.

A nanoelectronic scaffold.

The team members see a big future for this tiny technology. Imagine, for instance, bioengineered cyborg blood vessels that could sense glucose levels and activate an implanted insulin pump, or nanoscale pacemakers coupled to nanoscale defibrillators within artificial heart tissue. Kohane also envisions “lab-on-a-chip” systems that would use engineered tissues to measure cellular reactions to potential new drugs.

With their strategy, Bozhi, Kohane and their colleagues have reversed some of the guiding principles of bioengineering. “Most of the time, your goal is to create scaffolds on which to grow tissues and then have those scaffolds degrade and dissolve away,” Kohane explains. “Here, the scaffold stays in the form of an embedded nanoscale network, and actually plays an active role in the tissue.”

Sample the news coverage in Gizmag, Medical News Today, the Harvard Gazette and the Boston Herald, and read past coverage on Vector of the Kohane lab’s work.

Tom Ulrich is a senior science writer in the Children’s Hospital Boston Department of Public Affairs, covering laboratory and clinical research innovations across the hospital. Over the last ten years, Tom has parlayed his curiosity about science and passion for science writing and communications into a number of roles, including development writer at Dana-Farber Cancer Institute, marketing writer at AIR Worldwide, and editorial & account director at Feinstein Kean Healthcare. Most recently, he was the communications manager at Harvard Catalyst | The Harvard Clinical and Translational Science Center. Tom earned a master’s degree in molecular microbiology and immunology from the Bloomberg School of Public Health at Johns Hopkins University, and is an amateur photographer.

Filed Under: News Well, Research & Development Tagged With: Boston Children's Hospital, Nanotechnology, Vector Blog

More recent news

  • Data backs Medtronic MiniMed 780G for type 2, children as company seeks expanded indications
  • Endogenex data supports type 2 diabetes procedure
  • Ambu wins FDA clearance for first single-use cysto-nephroscope
  • Tandem Diabetes Care pairs t:slim X2 pump with Abbott FreeStyle Libre 3 Plus in U.S.
  • Ypsomed, CamDiab to integrate Abbott dual glucose-ketone sensor into automated insulin delivery system

Primary Sidebar

“md
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest med device regulatory, business and technology news.

DeviceTalks Weekly

See More >

MEDTECH 100 Stock INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
MDO ad

Footer

MASSDEVICE MEDICAL NETWORK

DeviceTalks
Drug Delivery Business News
Medical Design & Outsourcing
Medical Tubing + Extrusion
Drug Discovery & Development
Pharmaceutical Processing World
MedTech 100 Index
R&D World
Medical Design Sourcing

DeviceTalks Webinars, Podcasts, & Discussions

Attend our Monthly Webinars
Listen to our Weekly Podcasts
Join our DeviceTalks Tuesdays Discussion

MASSDEVICE

Subscribe to MassDevice E-Newsletter
Advertise with us
About
Contact us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy